Exact and Heuristic Algorithms for Semi-Nonnegative Matrix Factorization
نویسندگان
چکیده
منابع مشابه
Exact and Heuristic Algorithms for Semi-Nonnegative Matrix Factorization
Given a matrix M (not necessarily nonnegative) and a factorization rank r, semi-nonnegative matrix factorization (semi-NMF) looks for a matrix U with r columns and a nonnegative matrix V with r rows such that UV is the best possible approximation of M according to some metric. In this paper, we study the properties of semi-NMF from which we develop exact and heuristic algorithms. Our contributi...
متن کاملTight Semi-Nonnegative Matrix Factorization
The nonnegative matrix factorization is a widely used, flexible matrix decomposition, finding applications in biology, image and signal processing and information retrieval, among other areas. Here we present a related matrix factorization. A multi-objective optimization problem finds conical combinations of templates that approximate a given data matrix. The templates are chosen so that as far...
متن کاملHeuristics for exact nonnegative matrix factorization
The exact nonnegative matrix factorization (exact NMF) problem is the following: given an m-by-n nonnegative matrix X and a factorization rank r, find, if possible, an m-by-r nonnegative matrix W and an r-by-n nonnegative matrix H such that X = WH . In this paper, we propose two heuristics for exact NMF, one inspired from simulated annealing and the other from the greedy randomized adaptive sea...
متن کاملNonnegative Matrix Factorization: Algorithms and Parallelization
An alternative to singular value decomposition (SVD) in the information retrieval is the low-rank approximation of an original non-negative matrix A by its non-negative factors U and V . The columns of U are the feature vectors with no non-negative components, and the columns of V store the non-negative weights that serve for the combination of feature vectors. First experiments show that restr...
متن کاملHeuristic and exact algorithms for Generalized Bin Covering Problem
In this paper, we study the Generalized Bin Covering problem. For this problem an exact algorithm is introduced which can nd optimal solution for small scale instances. To nd a solution near optimal for large scale instances, a heuristic algorithm has been proposed. By computational experiments, the eciency of the heuristic algorithm is assessed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2015
ISSN: 0895-4798,1095-7162
DOI: 10.1137/140993272